4.6 Article

Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips

期刊

LANGMUIR
卷 19, 期 5, 页码 1580-1585

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la0263209

关键词

-

向作者/读者索取更多资源

The separation of membrane and substrate in cell adhesion is addressed, in particular the role of extracellular matrix proteins. Using fluorescence interference contrast microscopy, we measure a distance of 90 nm between a neuron membrane and oxidized silicon coated with laminin. For the glycocalix, we obtain 40 nm from the adhesion of neurons on polylysine. We propose that dangling laminin molecules contribute 50 nm to the total cell-solid distance by their repulsive steric force. For an unperturbed cushion of dangling laminin molecules, we estimate a thickness of 110 nm from sedimentation of giant lipid vesicles, after subtraction of membrane undulations. We propose that in cell adhesion the laminin cushion is compressed by the adhesive forces between laminin molecules and integrin receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据