4.8 Article

An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0535708100

关键词

-

向作者/读者索取更多资源

The pulsatile secretion of gonadotropin-releasing hormone (GnRH) from normal and immortalized hypothalamic GnRH neurons is highly calcium-dependent and is stimulated by cAMP. It is also influenced by agonist activation of the endogenous GnRH receptor (GnRH-R), which couples to G(q/11) as indicated by release of membrane-bound alpha(q/11) subunits and increased inositol phosphate/Ca2+ signaling. Conversely, GnRH antagonists increase membrane-associated alpha(q/11) subunits and abolish pulsatile GnRH secretion. GnRH also stimulates cAMP production but at high concentrations has a pertussis toxin-sensitive inhibitory effect, indicative of receptor coupling to G(i). Coupling of the agonist-activated GnRH-R to both G(s) and G(i) proteins was demonstrated by the ability of nanomolar GnRH concentrations to reduce membrane-associated alpha(s) and alpha(i3) levels and of higher concentrations to diminish alpha(i3) levels. Conversely, alpha(i3) was increased during GnRH antagonist and pertussis toxin treatment, with concomitant loss of pulsatile GnRH secretion. in cholera toxin-treated GnRH neurons, decreases in a, immunoreactivity and increases in cAMP production paralleled the responses to nanomolar GnRH concentrations. Treatment with cholera toxin and 8-bromo-cAMP amplified episodic GnRH pulses but did not affect their frequency. These findings suggest that an agonist concentration-dependent switch in coupling of the GnRH-R between specific G proteins modulates neuronal Ca2+ signaling via G(s)-cAMP stimulatory and G(i)-cAMP inhibitory mechanisms. Activation of G(i) may also inhibit GnRH neuronal function and episodic secretion by regulating membrane ion currents. This autocrine mechanism could serve as a timer to determine the frequency of pulsatile GnRH release by regulating Ca2+- and cAMP-dependent signaling and GnRH neuronal firing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据