4.6 Article

Geometric determinants of directional cell motility revealed using microcontact printing

期刊

LANGMUIR
卷 19, 期 5, 页码 1611-1617

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la026394k

关键词

-

资金

  1. NCI NIH HHS [CA-45548] Funding Source: Medline
  2. NIGMS NIH HHS [GM30367] Funding Source: Medline

向作者/读者索取更多资源

Mammalian cells redirect their movement in response to changes in the physical properties of their extracellular matrix (ECM) adhesive scaffolds, including changes in available substrate area, shape, or flexibility. Yet, little is known about the cell's ability to discriminate between different types of spatial signals. Here we utilize a soft-lithography-based, microcontact printing technology in combination with automated computerized image analysis to explore the relationship between ECM geometry and directional motility. When fibroblast cells were cultured on fibronectin-coated adhesive islands with the same area (900 mum(2)) but different geometric forms (square, triangle, pentagon, hexagon, trapezoid, various parallelograms) and aspect ratios, cells preferentially extended new lamellipodia from their corners. In addition, by imposing these simple geometric constraints through ECM, cells were directed to deposit new fibronectin fibrils in these same corner regions. These data indicate that mammalian cells can sense edges within ECM patterns that exhibit a wide range of angularity and that they use these spatial cues to guide where they will deposit ECM and extend new motile processes during the process of directional migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据