4.6 Article

DNA purification by triple-helix affinity precipitation

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 81, 期 5, 页码 535-545

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bit.10497

关键词

downstream processing; lower critical solution temperature; plasmid DNA; PNIPAM; precipitation; thermoresponsive polymer; triple-helix affinity

向作者/读者索取更多资源

Recent advances in DNA-based medicine (gene therapy, genetic vaccination) have intensified the necessity for pharmaceutical-grade plasmid DNA purification at comparatively large scales. In this contribution triple-helix affinity precipitation is introduced for this purpose. A short, single-stranded oligonucleotide sequence (namely (CTT)(7)), which is capable of recognizing a complementary sequence in the double-stranded target (plasmid) DNA, is linked to a thermoresponsive N-isopropylacrylamide oligomer to form a so-called affinity macroligand (AML). At 4degreesC, i.e., below its critical solution temperature, the AML binds specifically to the target molecule in solution; by raising the temperature to 40degreesC, i.e., beyond the critical solution temperature of the AML, the complex can be precipitated quantitatively. After redissolution of the complex at lower temperature, the target DNA can be released by a pH shift to slightly alkaline conditions (pH 9.0). Yields of highly pure (plasmid) DNA were routinely between 70% and 90%. Non-specific co-precipitation of either the target molecule by the non-activated AML precursor or of contaminants by the AML were below 7% and presumably due to physical entrapment of these molecules in the wet precipitate. Ligand efficiencies were at least 1 order of magnitude higher than in triple-helix affinity chromatography. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据