4.7 Article

How the global structure of protein interaction networks evolves

期刊

出版社

ROYAL SOC
DOI: 10.1098/rspb.2002.2269

关键词

molecular evolution; gene networks; scale-free networks

资金

  1. NIGMS NIH HHS [GM06882-01] Funding Source: Medline

向作者/读者索取更多资源

Two processes can influence the evolution of protein interaction networks: addition and elimination of interactions between proteins, and gene duplications increasing the number of proteins and interactions. The rates of these processes can be estimated from available Saccharomyces cerevisiae genome data and are sufficiently high to affect network structure on short time-scales. For instance, more than 100 interactions may be added to the yeast network every million years, a fraction of which adds previously unconnected proteins to the network. Highly connected proteins show a greater rate of interaction turnover than proteins with few interactions. From these observations one can explain (without natural selection on global network structure) the evolutionary sustenance of the most prominent network feature, the distribution of the frequency P(d) of proteins with d neighbours, which is broad-tailed and consistent with a power law, that is: P(d) proportional to d(-y).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据