4.6 Article

On the elastic properties of carbon nanotube-based composites: modelling and characterization

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 36, 期 5, 页码 573-582

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/36/5/323

关键词

-

向作者/读者索取更多资源

The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanotube structure. The experimental characterization results are compared with numerical predictions and highlight the structure/size influence of the nanotube reinforcement on the properties of the nanocomposite. The nanocomposite elastic properties are particularly sensitive to the nanotube diameter, since larger diameter nanotubes show a lower effective modulus and occupy a greater volume fraction in the composite relative to smaller-diameter nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据