4.6 Article

Nuclear factor-κB and mitogen-activated protein kinases mediate nitric oxide-enhanced transcriptional expression of interferon-β

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 10, 页码 8018-8027

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M211642200

关键词

-

资金

  1. NHLBI NIH HHS [HL40922, HL35014] Funding Source: Medline

向作者/读者索取更多资源

Mitogen-activated protein (AL4P) kinase and nuclear factor-kappaB (NF-kappaB) activation are critical for initiating the transcriptional expression of cytokines, cell adhesion molecules, and other factors in the macrophage immune response. Nitric oxide (NO), an endogenous free radical, is a product of macrophages that mediates inflammatory and cytotoxic processes in the immune system. Here we report the effects of NO on MAP kinase signaling and NF-kappaB activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and correlate these effects to the induction target genes, including interferon-beta (IFN-beta) and IkappaB-alpha. LPS alone induced a rapid phosphorylation of the stress-activated MAP kinases: c-Jun N-terminal kinase (JNK) and p38. Simultaneous treatment with LPS and the NO donor, diethylamine NONOate (DEA/NO), enhanced and prolonged JNK and p38 phosphorylation. Similarly, DEA/NO prolonged the LPS-induced degradation of the NF-kappaB inhibitory subunit, IkappaB-alpha, despite an increase in IkappaB-alpha mRNA levels. Whereas DEA/NO alone was sufficient to induce JNK and p38 phosphorylation, it was not sufficient to cause IkappaB-a degradation. The enhancement of IkappaB-alpha degradation by DEA/NO correlated with an increase in the nuclear levels of the p50 and p65 subunits and DNA-binding activity determined by electrophoretic mobility shift assay. DEA/NO and an additional NO donor, MAHMA/NO, are further demonstrated to enhance the transcriptional expression of the IFN-beta gene. The results suggest a role for NO in enhancing and propagating inflammatory conditions and the immune response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据