4.7 Article

1H NMR studies of maltose, maltoheptaose, α-, β-, and γ-cyclodextrins, and complexes in aqueous solutions with hydroxy protons as structural probes

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 68, 期 5, 页码 1671-1678

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo0262154

关键词

-

向作者/读者索取更多资源

The H-1 NMR chemical shifts, coupling constants, temperature coefficients, and exchange rates have been measured for the hydroxy protons of aqueous solutions of alpha-, beta-, and gamma-cyclodextrins, maltose, and maltoheptaose. In cyclodextrins (CDs), the high chemical shift of the O(3)H signal and its small (3)J(OH,CH) value suggest that O(3)H is involved in a hydrogen bond. The small temperature coefficients and rate of exchange values of O(2)H and O(3)H confirm the involvement of O(3)H in hydrogen bonding and indicate that O(2)H is the hydrogen bond partner. In maltose, two distinct NMR signals with two different vicinal coupling constants are found for O(2')H. A cross-peak in the ROESY spectrum indicates chemical exchange between the O(2')H and O(3)H protons. The existence of two distinct NMR signals with different J values for O(2')H shows the influence of anomeric configuration on the O(2')H-O(3)H interaction. The effect of complexation with methyl benzoate, adamantane-1-carboxylic acid, adamantane-1-ol, and L- and D-tryptophane on the NMR spectra of the hydroxy protons of alpha-, beta-, and gamma-cyclodextrins and of maltose has been investigated. No significant spectral changes were observed upon addition of methyl benzoate and adamantane1-carboxylic acid. The addition of adamantane-1-ol resulted in an upfield shift and a strong broadening of the O(2)H signal from alpha-CD, and a small temperature coefficient was measured upon complexation. The O(2)H and O(3)H signals in beta-CD were broadened and shifted downfield upon addition of L- and D-tryptophane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据