4.7 Article

Photografting and the control of surface chemistry in three-dimensional porous polymer monoliths

期刊

MACROMOLECULES
卷 36, 期 5, 页码 1677-1684

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma021351w

关键词

-

向作者/读者索取更多资源

The photografting of porous three-dimensional materials has been achieved using a benzophenone-initiated surface photopolymerization within the pores of a macroporous polymer monolith contained in a fused silica capillary. Despite the relatively high thickness (100 mum or more) of the layer of material involved, the photografting process occurs efficiently throughout its cross section as confirmed by electron probe microanalysis. In addition, the use of photomasks during grafting enables the precise placement of specific functionalities in selected and predetermined areas of a single monolith for use in a variety of applications ranging from supported catalysis to microfluidics. For example, we have demonstrated the fast and selective incorporation of chains of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) into the irradiated areas of pores of a 100 mum thick monolith and monitored the extent of grafting through measurements of the electroosmotic flow afforded by the newly introduced ionized functionalities. Grafting of the porous polymer with 4,4-dimethyl-2-vinylazlactone was also successful and could be monitored visually by fluorescence measurements following fluorescent labeling of the grafted chains with Rhodamine 6G.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据