4.6 Article

ADAM12/syndecan-4 signaling promotes β1 integrin-dependent cell spreading through protein kinase Cα and RhoA

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 11, 页码 9576-9584

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M208937200

关键词

-

资金

  1. NCI NIH HHS [CA80789] Funding Source: Medline
  2. NIGMS NIH HHS [GM50194] Funding Source: Medline

向作者/读者索取更多资源

The ADAMs (a disintegrin and metalloprotease) comprise a large family of multidomain proteins with cell-binding and metalloprotease activities. The ADAM12 cysteine-rich domain (rADAM12-cys) supports cell attachment using syndecan-4 as a primary cell surface receptor that subsequently triggers beta(1) integrin-dependent cell spreading, stress fiber assembly, and focal adhesion formation. This process contrasts with cell adhesion on fibronectin, which is integrin-initiated but syndecan-4-dependent. In the present study, we investigated ADAM12/syndecan-4 signaling leading to cell spreading and stress fiber formation. We demonstrate that syndecan-4, when present in significant amounts, promotes beta(1) integrin-dependent cell spreading and stress fiber formation in response to rADAM12-cys. A mutant form of syndecan-4 deficient in protein kinase C (PKC)alpha activation or a different member of the syndecan family, syndecan-2, was unable to promote cell spreading. GF109203X and Go6976, inhibitors of PKC, completely inhibited ADAM12/syndecan-4-induced cell spreading. Expression of syndecan-4, but not syn4DeltaI, resulted in the accumulation of activated beta(1) integrins at the cell periphery in Chinese hamster ovary beta1 cells as revealed by 12G10 staining. Further, expression of myristoylated, constitutively active PKCalpha resulted in beta(1) integrin-dependent cell spreading, but additional activation of RhoA was required to induce stress fiber formation. In summary, these data provide novel insights into syndecan-4 signaling. Syndecan-4 can promote cell spreading in a beta(1) integrin-dependent fashion through PKCalpha and RhoA, and PKCalpha and RhoA likely function in separate pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据