4.6 Article

Simulation of high velocity concrete fragmentation using SPH/MLSPH

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nme.617

关键词

meshfree methods; concrete; fragmentation; SPH

向作者/读者索取更多资源

The simulation of concrete fragmentation under explosive loading by a meshfree Lagrangian method, the smooth particle hydrodynamics method (SPH) is described. Two improvements regarding the completeness of the SPH-method are examined, first a normalization developed by Johnson and Beissel (NSPH) and second a moving least square (MLS) approach as modified by Scheffer (MLSPH). The SPH-Code is implemented in FORTRAN 90 and parallelized with MPI. A macroscopic constitutive law with isotropic damage for fracture and fragmentation for concrete is implemented in the SPH-Code. It is shown that the SPH-method is able to simulate the fracture and fragmentation of concrete slabs under contact detonation. The numerical results from the different SPH-methods are compared with the data from tests. The good agreement between calculation and experiment suggests that the SPH-program can predict the correct maximum pressure as well as the damage of the concrete slabs. Finally the fragment distributions of the tests and the numerical calculations are compared. Copyright (C) 2003 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据