4.6 Article

Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy

期刊

JOURNAL OF APPLIED PHYSICS
卷 93, 期 6, 页码 3370-3375

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1545155

关键词

-

向作者/读者索取更多资源

The Mg-acceptor activation mechanism and transport characteristics in a Mg-doped InGaN layer grown by metalorganic vapor phase epitaxy are systematically investigated through their structural, optical, and electrical properties. The In mole fraction was from 0 to 0.13, and the Mg concentration varied from 1x10(19) to 1x10(20) cm(-3). X-ray rocking curves for Mg-doped InGaN layers indicate that the structural quality is comparable to that of undoped and Si-doped InGaN layers. Their photoluminescence spectra show emissions related to deep donors emerged at lower energy when Mg doping concentrations are above 2-3x10(19) cm(-3). The electrical properties also support the existence of these deep donors in the same Mg concentration range because the hole concentration starts to decrease at around the Mg concentration of 2-3x10(19) cm(-3). These results indicate that self-compensation occurs in Mg-doped InGaN at higher-doping levels. The temperature dependence of the hole concentration in Mg-doped InGaN indicates that the acceptor activation energy decreases with increasing In mole fraction. This is the reason the hole concentration in Mg-doped InGaN is higher than that in Mg-doped GaN at room temperature. In addition, the compensation ratio increases with doping concentration, which is consistent with the deep donor observed in PL spectra. For Mg-doped InGaN, impurity band conduction is dominant in carrier transport up to a relatively higher temperature than that for Mg-doped GaN, since the acceptor concentration for Mg-doped InGaN is higher than that of Mg-doped GaN. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据