4.6 Article

Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 411, 期 2, 页码 189-195

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0003-9861(03)00003-1

关键词

glucoamylase; Saccharomycopsis fibuligera; starch-binding domain; raw starch; primary structure; tertiary structure model

向作者/读者索取更多资源

Raw-starch-degrading glucoamylases have been known as multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain (SBD) by an O-glycosylated linker region. A molecular genetics approach has been chosen to find structural differences between two related glucoamylases, raw-starch-degrading Glm and nondegrading Glu, from the yeasts Saccharomycopsis fibuligera IFO 0111 and HUT 7212, respectively. We have found that Glm and Glu show a high primary (77%) and tertiary structure similarity. Glm, although possessing a good ability for raw starch degradation, did not show consensus amino acid residues to any SBD found in glucoamylases or other amylolytic enzymes. Raw starch binding and digestion by Glm must thus depend on the existence of a site(s) lying within the intact protein which lacks a separate SBD. The enzyme represents a structurally new type of raw-starch-degrading glucoamylase. (C) 2003 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据