4.8 Article

Electrophoretic protein transport in gold nanotube membranes

期刊

ANALYTICAL CHEMISTRY
卷 75, 期 6, 页码 1239-1244

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac020711a

关键词

-

向作者/读者索取更多资源

Gold nanotube membranes are ideal model systems for exploring how pore size affects the rate and selectivity of protein transport in synthetic membranes. This is because these membranes have cylindrical, monodisperse pores (the nanotubes) with diameters that can be varied at will from tens of nanometers down to less than 1 nm. We report here on the effects of nanotube inside diameter, solution pH, and applied transmembrane potential on the rate and selectivity of protein transport in PEG-thiol-treated gold nanotube membranes. The transport properties of four proteins of differing sizes and pI values-lysozyme, bovine serum albumin, carbonic anhydrase, and bovine hemoglobulin-were investigated. In general, membranes containing larger diameter nanotubes showed higher fluxes and lower selectivities than membranes with smaller diameter nanotubes. Transmembrane electrophoresis can be used to augment the diffusive transport selectivity. For example, for proteins that are oppositely charged, a combination of a large transmembrane potential and a large nanotube diameter can be used to optimize both selectivity and flux. In addition to transmembrane potential and nanotube diameter, solution pH value plays an important role in determining the transport selectivity. This is because pH determines the net charge on the protein molecule and this, in turn, determines the importance of the electrophoretic transport term.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据