4.4 Article

The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling

期刊

BIOCHEMISTRY
卷 42, 期 10, 页码 3054-3059

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi026801r

关键词

-

向作者/读者索取更多资源

Phosphatidylcholine (PC), a major lipid class in the membranes of eukaryotes, is synthesized either via the triple methylation of phosphatidylethanolamine (PE) or via the CDP-choline route. To investigate whether the two biosynthetic routes contribute differently to the steady-state profile of PC species, i.e., PC molecules with specific acyl chain compositions, the pools of newly synthesized PC species were monitored by labeling Saccharomyces cerevisiae with deuterated precursors of the two routes, (methyl-D-3)-methionine and (D-13)-choline, respectively. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that the two PC biosynthetic pathways yield different sets of PC species, with the CDP-choline route contributing most to the molecular diversity. Moreover, yeast was shown to be capable of remodeling PC by acyl chain exchange at the sn-1 position of the glycerol backbone. Remodeling was found to be required to generate the steady-state species distribution of PC. This is the first study demonstrating a functional difference between the two biosynthetic routes in yeast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据