4.6 Article

Single molecule characterization of P-selectin/ligand binding

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 12, 页码 10556-10561

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M213233200

关键词

-

向作者/读者索取更多资源

P-selectin expressed on activated platelets and vascular endothelium mediates adhesive interactions to polymorphonuclear leukocytes (PMNs) and colon carcinomas critical to the processes of inflammation and bloodborne metastasis, respectively. How the overall adhesiveness (i.e. the avidity) of receptor/ligand interactions is controlled by the affinity of the individual receptors to single ligands is not well understood. Using single molecule force spectroscopy, we probed in situ both the tensile strength and off-rate of single P-selectin molecules binding to single ligands on intact human PMNs and metastatic colon carcinomas and compared them to the overall avidity of these cells for P-selectin substrates. The use of intact cells rather than purified proteins ensures the proper orientation and preserves post-translational modifications of the P-selectin ligands. The P-selectin/PSGL-1 interaction on PMNs was able to withstand forces up to 175 pN and had an unstressed off-rate of 0.20 s(-1). The tensile strength of P-selectin binding to a novel O-linked, sialylated protease-sensitive ligand on LS174T colon carcinomas approached 125 pN, whereas the unstressed off-rate was 2.78 s(-1). Monte Carlo simulations of receptor/ligand bond rupture under constant loading rate for both P-selectin/PSGL-1 and P-selectin/LS174T ligand binding give distributions and mean rupture forces that are in accord with experimental data. The pronounced differences in the affinity for P-selectin/ligand binding provide a mechanistic basis for the differential abilities of PMNs and carcinomas to roll on P-selectin substrates under blood flow conditions and underline the requirement for single molecule affinity measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据