4.7 Article

Preconcentration of copper on ion-selective imprinted polymer microbeads

期刊

ANALYTICA CHIMICA ACTA
卷 480, 期 2, 页码 251-258

出版社

ELSEVIER
DOI: 10.1016/S0003-2670(02)01656-2

关键词

imprinted polymer; solid phase extraction; preconcentration; copper determination; flame atomic absorption spectrometry

向作者/读者索取更多资源

Molecular recognition-based separation techniques have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the preparation of such systems. In this study, we have prepared a novel molecular imprinted adsorbent to remove heavy metal ions with high selectivity. The Cu(II)-imprinted poly(ethylene glycol dimethacrylate-methacryloylamidohistidine/Cu(II)) (poly(EGDMA-MAH/Cu(II))) microbeads with an average size of 150-200 mum were prepared by dispersion polymerization. These Cu(II) imprinted microbeads were used in the adsorption-desorption of copper(II) ions from metal solutions. Adsorption equilibria was achieved in about 1 h. The maximum adsorption of Cu(II) ions onto imprinted microbeads was about 48 mg/g. The pH significantly affected the adsorption capacity of imprinted microbeads. The observed adsorption order under competitive conditions was Cu(II) > Zn(II) > Ni(II) > Co(II) in mass basis. The imprinted microbeads can be easily regenerated by 0.1 M EDTA solution with higher effectiveness. The imprinted microbeads showed excellent selectivity for the target molecule (i.e. Cu(II) ions due to molecular geometry). These features make imprinted microbeads very good candidate for selective removal of Cu(II) ions at high adsorption capacity. Detection limit was increased at least 1000-folds with the preconcentration approach using the imprinted microbeads. The method was also applied to certified reference and seawater samples. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据