3.8 Article

Dendritic morphology is altered in hippocampal neurons following prenatal compromise

期刊

JOURNAL OF NEUROBIOLOGY
卷 55, 期 1, 页码 41-52

出版社

WILEY
DOI: 10.1002/neu.10194

关键词

development; prenatal insult; dendritic outgrowth; fetal growth restriction

向作者/读者索取更多资源

Chronic placental insufficiency (CPI), a known cause of intrauterine growth restriction, can lead to structural alterations in the developing brain that might underlie postnatal neurological deficits. We have previously demonstrated significant reductions in the volumes of hippocampal neuropil layers in fetal guinea pig brains following experimentally induced growth restriction. To determine the components of the neuropil affected in the brains of growth restricted (GR) fetuses, the dendritic morphology of CA1 pyramidal neurons and dentate granule cells was examined. CPI was induced by unilateral uterine artery ligation in pregnant guinea pigs at midgestation (term approximate to67days). Hippocampi from control and GR fetuses were stained using the Rapid Golgi technique and the growth and branching of the dendritic arbors were quantified using the Sholl method. In addition, the density of dendritic spines was determined on the apical arbors of each population. In GR brains (n = 7) compared to controls (n = 7), there was a reduction in dendritic elongation (p < 0.005) and an alteration in the branch point distribution in CA1 basal arbors, and a reduction both in the outgrowth (p < 0.05) and branch point number (p < 0.05) of CA1 apical arbors. Dentate granule cells from GR brains also demonstrated reduced dendritic outgrowth (p < 0.05). There was an increase in dendritic spine density in both neuronal populations; this might be due either to altered synaptic pruning or as a compensatory mechanism for reduced dendritic length. These findings demonstrate that a chronic prenatal insult causes selective changes in the morphology of hippocampal cell dendrites and may lead to alterations in hippocampal function in the postnatal period. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据