4.6 Article

Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00881.2002

关键词

heme oxygenase; endothelial

资金

  1. NHLBI NIH HHS [R01 HL034059] Funding Source: Medline

向作者/读者索取更多资源

The excitatory neurotransmitter glutamate causes dilation of newborn pig cerebral arterioles in vivo that is blocked by inhibition of carbon monoxide (CO) production. CO, a potent dilator in cerebral circulation in vivo, is produced endogenously in cerebral microvessels via heme oxygenase (HO). In isolated pressurized cerebral arterioles (similar to200 mum) from newborn pigs, we investigated the involvement of CO and the endothelium in response to glutamate. A CO-releasing molecule, dimanganese decacarbonyl (10(-8)-10(-6) M), dilated cerebral arterioles. Glutamate (10(-6)-10(-4) M) and 1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD; 10(-6)-10(-5) M), a N-methyl-D-aspartate (NMDA) receptor agonist, caused cerebral vascular dilation. Dilation of cerebral arterioles to glutamate and cis-ACPD was abolished by chromium mesoporphyrin (CrMP; 10(-6) M), a HO inhibitor. In contrast, CrMP did not alter dilation to isoproterenol, a beta-adrenergic receptor agonist. Endothelium-denuded cerebral arterioles did not dilate to glutamate or bradykinin (endothelium-dependent dilator), whereas responses to isoproterenol were preserved. These data indicate that cerebral arterioles from newborn pigs may directly respond to glutamate and the NMDA receptor agonists by endothelium-dependent dilation that involves stimulation of CO production via the HO pathway in the endothelium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据