4.7 Article

Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates

期刊

PHYSICAL REVIEW E
卷 67, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.67.046227

关键词

-

向作者/读者索取更多资源

The dynamics of the three coupled bosonic wells (trimer) containing N bosons is investigated within a standard (mean-field) semiclassical picture based on the coherent-state method. Various periodic solutions (configured as pi-like, dimerlike, and vortex states) representing collective modes are obtained analytically when the fixed points of trimer dynamics are identified on the N=const submanifold in the phase space. Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic orbits (associated with fixed points) is studied via numeric integration of trimer motion equations, thus revealing a diffused chaotic behavior (not excluding the presence of regular orbits), macroscopic effects of population inversion, and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of chaos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据