4.7 Article

Mechanics of boring processes - Part I

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0890-6955(02)00276-6

关键词

force modeling; chip load; single point boring; orthogonal to oblique transformation

向作者/读者索取更多资源

Mechanics of boring operations are presented in the paper. The distribution of chip thickness along the cutting edge is modeled as a function of tool inclination angle, nose radius, depth of cut and feed rate. The cutting mechanics of the process is modeled using both mechanistic and orthogonal to oblique cutting transformation approaches. The forces are separated into tangential and friction directions. The friction force is further projected into the radial and feed directions. The cutting forces are correlated to chip area using mechanistic cutting force coefficients which are expressed as a function of chip-tool edge contact length, chip area and cutting speed. For tools which have uniform rake face. the cutting coefficients are predicted using shear stress, shear angle and friction coefficient of the material. Both approaches are experimentally verified and the cutting forces in three Cartesian directions are predicted satisfactorily. The mechanics model presented in this paper is used in predicting the cutting forces generated by inserted boring heads with runouts and presented in Part II of the article [1]. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据