4.0 Article

Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin:: Fabrication and in vitro performance

期刊

TISSUE ENGINEERING
卷 9, 期 2, 页码 371-384

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632703764664846

关键词

-

向作者/读者索取更多资源

An injectable and in situ gelable scaffold can fully fill the space of cartilaginous defects of complex shapes. The authors attempted to develop a novel injection-driven technique for cartilage repair using a thermoresponsive gelatin, poly(N-isopropylacrylamide)-grafted gelatin (PNIPAAm-gelatin). A mixed solution of chondrocytes was isolated from a Japanese white rabbit and PNIPAAm-gelatin was spontaneously solidified at 37 degreesC and cultured. The number of cells in the gel with a poly(N-isopropylacrylamide) ( PNIPAAm) chain of high molecular weight (1.3 x 10(5) g/mol) and at low concentration (5 w/v%) remained unchanged irrespective of culture time, and minimal cell death and little cell proliferation were observed. A round-shaped morphology was dominantly restored even at 1 week of incubation. The cell population in the G(0)/G(1) phase was high ( more than 90%), and this gradually increased with culture time. Type II collagen and sulfated glycosaminoglycan (s-GAG) were detected in the tissue-engineered cartilage, but a small amount of type I collagen was also detected. Total collagen and s-GAG increased in level close to those of native hyaline cartilage over 12 weeks of culture. Mechanical properties of the tissue-engineered cartilage responding to loading and unloading of compression force tend to approach those of native hyaline cartilage with culture time. These results suggest that PNIPAAm-gelatin may be a suitable in situ formable scaffold for cartilage repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据