4.7 Article

Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment

期刊

DEVELOPMENT
卷 130, 期 7, 页码 1429-1438

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.00359

关键词

auxin; root; quiescent center; redox regulation; maize

向作者/读者索取更多资源

Embedded within the meristem of all Angiosperm roots is a population of slowly dividing cells designated the quiescent center (QC). In maize roots the QC can constitute upwards of 800-1200 cells, most of which spend an extended period of time (180-200 hours) in the G(1) phase of the cell cycle. How the QC forms and is maintained is not known. Here we report that cells of the QC are characterized by their highly oxidized status. Glutathione and ascorbic acid occur predominately in the oxidized forms in the QC. This is contrasted with the status of these redox intermediates in adjacent, rapidly dividing cells in the root meristem, in which the reduced forms of these two species are favored. Using a redox sensitive fluorescent dye we were able to visualize an overall oxidizing environment in the QC, and we also made comparisons with the adjacent, rapidly dividing cells in the root meristem. Altering the distribution of auxin and the location of the auxin maximum in the root tip activates the QC, and cells leave G(1) and enter mitosis. Commencement of relatively more rapid cell division in the QC is preceded by changes in the overall redox status of the QC, which becomes less oxidizing. We discuss how the position of the auxin maximum may influence the redox status of the QC and thereby modulate the cell cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据