4.5 Article

Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.102.045153

关键词

-

资金

  1. NIEHS NIH HHS [P30 ES06636] Funding Source: Medline
  2. DRS NIH HHS [RS03656] Funding Source: Medline

向作者/读者索取更多资源

Diabetes is a major cause of morbidity and mortality, and complications resulting from diabetes have been attributed in part to increased oxidative stress. Glutathione S-transferases (GSTs) constitute a major protective mechanism against oxidative stress. Studies of the expression and activity of GSTs during diabetes are inconclusive, with both increased and decreased GST expression being reported in vivo. Insulin and glucagon effects on GST expression and the signaling pathway involved in the glucagon regulation of GST expression were examined in primary cultured rat hepatocytes. The addition of insulin resulted in the elevation of alpha-class GST protein levels, whereas alpha- and pi-class GST protein levels were markedly decreased in hepatocytes cultured with glucagon. In contrast, mu-class GST protein expression was unaffected by insulin or glucagon treatment. Insulin concentrations greater than or equal to1 nM resulted in increased GST activities and alpha- class GST protein levels, whereas glucagon concentrations greater than or equal to20 nM decreased alpha- and pi-class protein levels and activity. Treatment of cells with 8-bromo-cAMP or dibutyryl-cAMP also resulted in decreased alpha- and pi-class GST protein levels. Pretreatment with N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89), a selective inhibitor of protein kinase A, before glucagon addition markedly attenuated the glucagon effect. This study demonstrates that insulin and glucagon regulate, in an opposing manner, the expression of alpha- class GSTs and that glucagon completely inhibits pi-class GST expression in vitro, suggesting that hepatic GST expression may be decreased during diabetes. Furthermore, the present study implicates cAMP and protein kinase A in mediating the inhibitory effect of glucagon on GST expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据