4.7 Article

Study of particle rearrangement during powder compaction by the Discrete Element Method

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-5096(02)00101-1

关键词

powder compaction; discrete element method; plastic indentation

向作者/读者索取更多资源

This paper presents simulations of cold isostatic and closed die compaction of powders based on the Discrete Element Method. Due to the particulate nature of powders, densification of the compact proceeds both through the plastic deformation at the particle contact and the mutual rearrangement of particles. The relative weight of each mechanism on the macroscopic deformation process depends on the contact law, the relative density, and the type of stress exerted on the particles (shear or pressure). 3D computer simulations have been carried out to investigate the role of these parameters on the deformation mechanisms of powder compacts. The effect of rearrangement is studied by comparing simulations that use a homogeneous strain field solution for which local rearrangement is omitted and simulations that include local rearrangement. It is shown that local rearrangement has some effect on average quantities such as the average coordination number, the average contact area and the macroscopic stress. The effect on averaged quantities is much stronger for closed die compaction than for isostatic compaction. However the main effect of local rearrangement is to widen the distribution of the parameters that define the contact (contact area in particular). The results of these simulations are compared to available experimental data and to statistical models that use a homogeneous strain field assumption. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据