4.7 Article

IκBα-dependent regulation of low-shear flow-induced NF-κB activity:: role of nitric oxide

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 284, 期 4, 页码 C1039-C1047

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00464.2001

关键词

low shear stress; inhibitor kappa B; endothelial nitric oxide synthase; nuclear factor-kappa B

资金

  1. NHLBI NIH HHS [F32-HL-09694-01A1, 1R01-HL-63032-01A1] Funding Source: Medline

向作者/读者索取更多资源

We have investigated the role of inhibitor kappaBalpha (IkappaBalpha) in the activation of nuclear factor kappaB (NF-kappaB) observed in human aortic endothelial cells (HAEC) undergoing a low shear stress of 2 dynes/cm(2). Low shear for 6 h resulted in a reduction of IkappaBalpha levels, an activation of NF-kappaB, and an increase in kappaB-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion. Overexpression of IkappaBalpha in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation of IkappaBalpha is the major factor in the low shear-induced activation of NF-kappaB in HAEC. We then investigated the role of nitric oxide (NO) in the regulation of IkappaBalpha/NF-kappaB. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-kappaB activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 muM) or sodium nitroprusside (1 mM) before low shear stress significantly increased cytoplasmic IkappaBalpha and concomitantly reduced NF-kappaB binding activity and kappaB-dependent VCAM-1 promoter activity. Together, these data suggest that NO may play a major role in the regulation of IkappaBalpha levels in HAEC and that the application of low shear flow increases NF-kappaB activity by attenuating NO generation and thus IkappaBalpha levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据