4.2 Article

Volumetric and viscometric studies on sodium nitrate and potassium nitrate in aqueous and H2O-urea solutions

期刊

MONATSHEFTE FUR CHEMIE
卷 134, 期 4, 页码 475-487

出版社

SPRINGER WIEN
DOI: 10.1007/s00706-002-0480-0

关键词

apparent molar volume; partial molar volume; viscosity coefficient; activation parameters; hydrogen bonding

向作者/读者索取更多资源

Density and viscosity of NaNO3 and KNO3 in aqueous and in H2O-urea solutions were determined as a function of electrolyte concentrations at 308, 313, 318, 323, and 328 K, respectively. The apparent molal volume (phi(nu)) of the electrolytes were found to be linear functions of the square root of the solute molality (b). The phi(nu) and rootb data were fitted to the Masson equation [1] by the least square method to obtain the apparent molar volume at infinite dilution (phi(nu)(o)), which is practically equal to the partial molar volume ((nu) over bar (o)(2)). The viscosity coefficients A and B were calculated on the basis of the viscosity of the solutions and the solvent concerned using the Jones-Dole [2] equation. The activation parameters for viscous flow (DeltaG(not equal), DeltaS(not equal), and DeltaH(not equal)) were calculated according to Eyring [3]. The values of (Deltamu(1)(not equal) - Deltamu(0)(not equal)) for the two systems were also calculated from B-coefficient data. The results were found to be of opposite nature in the two electrolyte systems. Where sodium nitrate showed structure making behaviour both in aqueous and in H2O-urea solutions, KNO3 showed structure breaking behaviour in aqueous solutions and structure making behaviour in 5 molal H2O-urea solutions in the studied temperature range. The behaviour of these two electrolytes in aqueous binary and in aqueous-urea ternary systems are discussed in terms of charge, size, and hydrogen bonding effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据