4.5 Article

On the transient phase of balanced SSFP sequences

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 49, 期 4, 页码 781-783

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mrm.10421

关键词

Bloch equation; relaxation times; signal optimization

向作者/读者索取更多资源

The signal intensity of balanced steady-state free precession (ssfp) imaging is a function of the proton density, T-1, T-2, flip angle (alpha), and repetition time (TR). The steady-state signal intensity that is established after about 5*T-1/TR can be described analytically. The transient phase or the approach of the echo amplitudes to the steady state is an exponential decay from the initial amplitude after the first excitation pulse to the steady-state signal. An analytical expression of the decay rate of this transient phase is presented that is based on a simple analysis derived from the Bloch equations. The decay rate is a weighted average of the T-1, T-2 relaxation times, where the weighting is determined by the flip angle of the excitation pulses. Thus, balanced SSFP imaging during the transient phase can provide various constrasts depending on the flip angle and the number of excitation pulses applied before the acquisition of the central k-space line. In addition, transient imaging of hyperpolarized nuclei, such as He-3, Xe-129, or C-13, can be optimized according to their T-1 and T-2 relaxation times. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据