4.6 Article

Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition

期刊

JOURNAL OF APPLIED PHYSICS
卷 93, 期 7, 页码 4005-4016

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1557783

关键词

-

向作者/读者索取更多资源

Using both analytical and experimental methods, we show that micron scale patterned growth of small molecular weight organic semiconductor thin films can be achieved by the recently demonstrated process of organic vapor phase deposition (OVPD). In contrast to the conventional process of vacuum thermal evaporation, the background gas pressure during OVPD is typically 0.1-10 Torr, resulting in a molecular mean free path (mfp) of from 100 to 1 mum, respectively. Monte Carlo simulations of film growth through apertures at these gas densities indicate that when the mfp is on the order of the mask-to-substrate separation, deposit edges can become diffuse. The simulations and deposition experiments discussed here indicate that the deposited feature shape is controlled by the mfp, the aperture geometry, and the mask-to-substrate separation. Carefully selected process conditions and mask geometries can result in features as small as 1 mum. Furthermore, based on continuum and stochastic models of molecular transport in confined geometries, we propose the in situ direct patterning growth technique of organic vapor jet printing. The high pattern definition obtained by OVPD makes this process attractive for the growth of a wide range of structures employed in modern organic electronic devices. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据