4.4 Article

Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA

期刊

AGROFORESTRY SYSTEMS
卷 57, 期 3, 页码 187-198

出版社

SPRINGER
DOI: 10.1023/A:1024898615284

关键词

corn; poplar; root biomass; switchgrass

向作者/读者索取更多资源

This study was conducted to determine biomass dynamics, carbon sequestration and plant nitrogen immobilization in multispecies riparian buffers, cool-season grass buffers and adjacent crop fields in central Iowa. The seven-year-old multispecies buffers were composed of poplar (Populus x euroamericana 'Eugenei') and switchgrass (Panicum virgatum L.). The cool-season grass buffers were dominated by non-native forage grasses (Bromus inermis Leysser., Phleum pratense L. and Poa pratensis L). Crop fields were under an annual corn-soybean rotation. Aboveground non-woody live and dead biomass were determined by direct harvests throughout two growing seasons. The dynamics of fine (0-2 mm) and small roots (2-5 mm) were assessed by sequentially collecting 35 cm deep, 5.4 cm diameter cores (125 cm deep cores in the second year) from April through November. Biomass of poplar trees was estimated using allometric equations developed by destructive sampling of trees. Poplar had the greatest aboveground live biomass, N and C pools, while switchgrass had the highest mean aboveground dead biomass, C and N pools. Over the two-year sampling period, live fine root biomass and root C and N in the riparian buffers were significantly greater than in crop fields. Growing-season mean biomass, C and N pools were greater in the multispecies buffer than in either of the crop fields or cool-season grass buffers. Rates of C accumulation in plant and litter biomass in the planted poplar and switchgrass stands averaged 2960 and 820 kg C ha(-1) y(-1), respectively. Nitrogen immobilization rates in the poplar stands and switchgrass sites averaged 37 and 16 kg N ha(-1) y(-1), respectively. Planted riparian buffers containing native perennial species therefore have the potential to sequester C from the atmosphere, and to immobilize N in biomass, therefore slowing or preventing N losses to the atmosphere and to ground and surface waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据