4.6 Article

Codistribution analysis of elastin and related fibrillar proteins in early vertebrate development

期刊

MATRIX BIOLOGY
卷 22, 期 2, 页码 109-121

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0945-053X(03)00014-3

关键词

tropoelastin; elastin; fibrillin-1; fibrillin-2; fibulin-1; avian; embryogenesis; development; morphogenesis; extracellular matrix

资金

  1. NCI NIH HHS [R24 CA095841] Funding Source: Medline
  2. NCRR NIH HHS [P20 RR016434] Funding Source: Medline

向作者/读者索取更多资源

Elastin is an extracellular matrix protein found in adult and neonatal vasculature, lung, skin and connective tissue. It is secreted as tropoelastin, a soluble protein that is cross-linked in the tissue space to form an insoluble elastin matrix. Cross-linked elastin can be found in association with several microfibril-associated proteins including fibrillin-1, fibrillin-2 and fibulin-1 suggesting that these proteins contribute to elastic fiber assembly, structure or function. To date, the earliest reported elastin expression was in the conotruncal region of the developing avian heart at 3.5 days of gestation. Here we report that elastin expression begins at significantly earlier developmental stages. Using a novel immunolabeling method, the deposition of elastin, fibrillin-1 and -2 and fibulin-1 was analyzed in avian embryos at several time points during the first 2 days of development. Elastin was found at the midline associated with axial structures such as the notochord and somites at 23 h of development. Fibrillin-1 and -2 and fibulin-1 were also expressed at the embryonic midline at this stage with fibrillin-1 and fibulin-1 showing a high degree of colocalization with elastin in fibers surrounding midline structures. The expression of these genes was confirmed by conventional immunoblotting and mRNA detection methods. Our results demonstrate that elastin polypeptide deposition occurs much earlier than was previously appreciated. Furthermore, the results suggest that elastin deposition at the early embryonic midline is accompanied by the deposition and organization of a number of extracellular matrix polypeptides. These filamentous extracellular matrix structures may act to transduce or otherwise stabilize dynamic forces generated during embryogenesis. (C) 2003 Elsevier Science B.V./International Society of Matrix Biology. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据