4.5 Article

Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.10416

关键词

soybean; casein; thermoplastic proteins; biomaterials; biodegradable polymers; degradation; bioactivity

向作者/读者索取更多资源

This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity behavior of the injection-molded thermoplastics were examined. It was possible to obtain materials and composites with a range of mechanical properties, which might allow for their application in the biomedical field. The incorporation of tricalcium phosphate into the soybean thermoplastic decreased its mechanical properties but lead to the nucleation of a bioactive calcium-phosphate film on their surface when immersed in a simulated body fluid solution. When compounded with 1% of a zirconate coupling agent, the nucleation and growth of the bioactive films on the surface of the referred to composites was accelerated. The materials degradation was studied for ageing periods up to 60 days in an isotonic saline solution. Both water uptake and weight loss were monitored as a function of the immersion time. After 1 month of immersion, the materials showed signal of chemical degradation, presenting weight losses up to 30%. However, further improvement on the mechanical performance and the enhancement of the hydrolytic stability of those materials will be highly necessary for applications in the biomedical field. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据