4.7 Article

Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection

期刊

JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
卷 30, 期 6, 页码 1266-1273

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ja00478g

关键词

-

向作者/读者索取更多资源

Synthetic amorphous silica is one of the two commodity materials dominating the market of nanomaterials in terms of production volume, used in several industrial applications and found in a wide variety of consumers' products including medicines, toothpastes, cosmetics and food. Recent evidence emerged that despite a long history of use further investigation is needed to exclude long-term effects on human health for specific applications, such as food. It is therefore important to have easy, reliable and sensitive analytical methods for the determination of nano-sized silica available. In this work a method for the simultaneous determination of particle size and mass concentration of synthetic amorphous silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection is described. Accurate dimensional characterization of the particles separated by FFF was achieved by means of both ICP-MS/MS detection with size calibrants and standardless sizing by MALS. Element-specific detection by ICP-MS/MS using all the three silicon isotopes, pre-channel mass-calibration with silica nanoparticles and post-channel mass-calibration with elemental standards were used to provide quantitative data on the silicon present in the size fractions separated online by FFF. The FFF-MALS-ICP-MS/MS method developed enabled dimensional and mass determination of silica particles over the size range of approximately 20-200 nm with satisfactory recoveries of the analyte material. The method was successfully applied to the characterization of two test samples, i.e. the reference material ERM-FD100 and a silica suspension having nominal diameters of 20 and 140 nm, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据