4.2 Article

Enhanced oxygen availability improves liver-specific functions of the AMC bioartificial liver

期刊

ARTIFICIAL ORGANS
卷 32, 期 2, 页码 116-126

出版社

WILEY
DOI: 10.1111/j.1525-1594.2007.00500.x

关键词

oxygen; hepatocytes; tissue engineering; acute liver failure; numerical modeling; computational fluid dynamics

向作者/读者索取更多资源

Long-term culturing of primary porcine hepatocytes (PPH) inside the Academic Medical Center (AMC)-bioartificial liver is characterized by increased anaerobic glycolysis. Recommendations to increase oxygen availability were proposed in a previous numerical study and were experimentally evaluated in this study. Original bioreactors as well as new configuration bioreactors with 2.2-fold thinner nonwoven matrix and 2-fold more capillaries were loaded with PPHs and oxygenated with different gas oxygen pressures resulting in medium pO(2) (pO(2-med)) of either 135-150 mm Hg or 235-250 mm Hg. After 6 days culturing, new configuration bioreactors with pO(2-med) of 250 mm Hg showed significantly reduced anaerobic glycolysis, 60% higher liver-specific functions, and increased transcript levels of five liver-specific genes compared to the standard bioreactor cultures. Changed bioreactor configuration and increasing pO(2-med) contributed equally to these improvements. Histological examination demonstrated small differences in cell organization. In conclusion, higher metabolic stability and liver-specific functionality was achieved by enhanced oxygen availability based on a prior modeling concept.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据