4.4 Article

Information Dynamics in Small-World Boolean Networks

期刊

ARTIFICIAL LIFE
卷 17, 期 4, 页码 293-314

出版社

MIT PRESS
DOI: 10.1162/artl_a_00040

关键词

Random Boolean networks; phase transitions; small-world networks; distributed computation; information storage; information transfer

向作者/读者索取更多资源

Small-world networks have been one of the most influential concepts in complex systems science, partly due to their prevalence in naturally occurring networks. It is often suggested that this prevalence is due to an inherent capability to store and transfer information efficiently. We perform an ensemble investigation of the computational capabilities of small-world networks as compared to ordered and random topologies. To generate dynamic behavior for this experiment, we imbue the nodes in these networks with random Boolean functions. We find that the ordered phase of the dynamics (low activity in dynamics) and topologies with low randomness are dominated by information storage, while the chaotic phase (high activity in dynamics) and topologies with high randomness are dominated by information transfer. Information storage and information transfer are somewhat balanced (crossed over) near the small-world regime, providing quantitative evidence that small-world networks do indeed have a propensity to combine comparably large information storage and transfer capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据