4.5 Article

Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 17, 期 7, 页码 1355-1364

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1460-9568.2003.02567.x

关键词

astrocyte; ATP; brain development; neuroblast; neurogenesis; subventricular zone; tanycyte

资金

  1. NHLBI NIH HHS [R01HL57307, R01HL63972-01] Funding Source: Medline

向作者/读者索取更多资源

In the adult nervous system, multipotential stem cells of the subventricular zone of the lateral ventricles generate neuron precursors (type-A cells) that migrate via the rostral migratory stream to the olfactory bulb where they differentiate into neurons. The migrating neuroblasts are surrounded by a sheath of astrocytes (type-B cells). Using immunostaining, in situ hybridization and enzyme histochemistry, we demonstrate that the ecto-ATPase nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) is expressed in the subventricular zone and the rostral migratory stream of the adult rat brain. This enzyme hydrolyses extracellular nucleoside triphosphates to the respective nucleoside diphosphates and is thought to directly modulate ATP receptor-mediated cell communication. Double labelling for the astrocyte intermediate filament protein GFAP and the glial glutamate transporter GLAST identifies the NTPDase2-positive cells as type-B cells. During development the enzyme protein is first detected at E18, long before expression of the astrocyte marker GFAP. It gradually becomes expressed along the ventricular and subventricular zone of the brain, followed by complete retraction to the adult expression pattern at P21. NTPDase2 is transiently expressed in the outer molecular layer of the dentate gyrus and within the cerebellar white matter and is associated with select microvessels, tanycytes of the third ventricle, and subpial astrocytes of the adult brain. Our results suggest that NTPDase2 can serve as a novel marker for specifying subsets of cells during in vivo and in vitro studies of neural development and raise the possibility that ATP-mediated signalling pathways play a role in neural development and differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据