4.7 Article

FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires

期刊

INORGANIC CHEMISTRY
卷 42, 期 7, 页码 2398-2404

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic020723e

关键词

-

向作者/读者索取更多资源

Attenuated total reflection Fourier transform infrared (FTIR) spectroscopy was used to characterize the surface species on oxide-free silicon nanowires (SiNWs) after etching with aqueous HF solution. The HF-etched SiNW surfaces were found to be hydrogen-terminated; in particular, three types of silicon hydride species, the monohydride (SiH), the dihydricle (SiH2) and the trihydricle (SiH3) had been observed. The thermal stability of the hydrogen-passivated surfaces of SiNWs was investigated by measuring the FTIR spectra after annealing at different elevated temperatures. It was found that hydrogen desorption of the trihydricles occurred at similar to550 K, and that of the dihydrides occurred at similar to650 K. At or above 750 K, all silicon hydride species began to desorb from the surfaces of the SiNWs. At around 850 K, the SiNW surfaces were free of silicon hydride species. The stabilities and reactivities of HF-etched SiNWs in air and water were also studied. The hydrogen-passivated surfaces of SiNWs showed good stability in air (under ambient conditions) but relatively poor stability in water. The stabilities and reactivities of the SiNWs are also compared with those of silicon wafers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据