4.7 Article

Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels

期刊

JOURNAL OF SOUND AND VIBRATION
卷 261, 期 5, 页码 871-893

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-460X(02)01015-5

关键词

-

向作者/读者索取更多资源

This paper investigates free vibration and dynamic instability of functionally graded cylindrical panels subjected to combined static and periodic axial forces and in thermal environment. Theoretical formulations are based on Reddy's higher order shear deformation shell theory to account for rotary inertia and the parabolic distribution of the transverse shear strains through the panel thickness. Thermal effects due to steady temperature change are included in the analysis. Material properties are assumed to be temperature dependent and graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The panel under current consideration is clamped or simply supported on two straight edges and may be either free, simply supported or clamped on the curved edges. A semi-analytical approach, which takes the advantages of one-dimensional differential quadrature approximation, Galerkin technique and Bolotin's method, is employed to determine the natural frequencies and the unstable regions of the panel. Numerical results for silicon nitride/stainless-steel cylindrical panels are given in both dimensionless tabular and graphical forms. Effects of material composition, temperature rise, panel geometry parameters, and boundary conditions on free vibration and the parametric resonance are also studied. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据