4.6 Article

Low density lipoprotein receptor-related protein-mediated membrane translocation of 12/15-lipoxygenase is required for oxidation of low density lipoprotein by macrophages

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 15, 页码 13350-13355

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M212104200

关键词

-

向作者/读者索取更多资源

Oxidation of low density lipoprotein (LDL) is the key step for the development of atherosclerosis. The 12/15-lipoxygenase expressed in macrophages is capable of oxygenating linoleic acid esterified to cholesterol in the LDL particle, and thus this enzyme is presumed to initiate LDL oxidation. We recently reported that LDL receptor-related protein (LRP) was required for the enzyme-mediated LDL oxidation by macrophages and suggested the selective uptake of cholesterol ester from LDL to the plasma membrane (Xu, W., Takahashi, Y., Sakashita, T., Iwasaki, T., Hattori, H., and Yoshimoto. T. (2001) J. Biol. Chem 276,36454-36459). To elucidate precise mechanisms of lipoxygenase-mediated LDL oxidation, we investigated the intracellular localization of 12/15-lipoxygenase. The 12/15-lipoxygenase was predominantly detected in cytosol of resting peritoneal macrophages and of macrophage-like J774A.1 cells permanently transfected with the cDNA for the enzyme. When the cells were treated with LDL and subjected to subcellular fractionation, the 12/15-lipoxygenase was detected in the membranes with a concomitant decrease in cytosol as shown by Western blot analysis. The levels of the enzyme associated with the membrane reached maximum in 15 min after LDL addition and then decreased. However, the enzymatic activity of 12/15-lipoxygenase in the membrane fraction was very weak even after LDL treatment. This fact supports the suicide inactivation of the enzyme by the oxygenation of cholesterol ester transferred from the LDL particle to the plasma membrane. Immunohistochemical analysis using an antibody against 12/15-lipoxygenase revealed that the plasma membrane was the major site of the enzyme translocation by the LDL treatment. LDL-dependent 12/15-lipoxygenase translocation was inhibited by a blocking antibody against LRP. Furthermore, an enzyme translocation inhibitor, L655238, inhibited the LDL oxidation caused by the 12/15-lipoxygenase. We propose that cholesterol ester selectively transferred from the LDL particle to the plasma membrane via LRP is oxygenated by 12/15-lipoxygenase translocated to this membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据