4.6 Article

Effect of equilibrium bulk water content on the humidity-dependent surface mechanical properties of hydrophilic contact lenses studied by atomic force microscopy

期刊

LANGMUIR
卷 19, 期 8, 页码 3453-3460

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la026719x

关键词

-

向作者/读者索取更多资源

The surface mechanical properties of neutral poly(HEMA) (HEMA, hydroxyethyl methacrylate) and ionic poly(HEMA+MA) (MA, methacrylic acid) soft contact lenses were compared using the atomic force microscope (AFM). Surface stiffness, adhesion, and viscoelastic effects were extracted from AFM load-displacement plots collected under a variable probing rate in order to gauge interfacial water content as a function of humidity. Below 60% relative humidity, the surfaces of both lenses are water-depleted, relative to the bulk, and behave as glassy (elastic) polymers. As the relative humidity exceeds similar to60% and surface evaporation decreases, the surfaces of both contact lenses soften and the viscoelastic relaxation time decreases. The onset of viscoelastic behavior at the poly(HEMA+MA) surface is delayed, relative to that of poly(HEMA). This suggests that poly(HEMA) has greater interfacial water content than poly(HEMA+MA), although it possesses a lower equilibrium water content in the bulk. The AFM data also show poly(HEMA) possesses greater work of adhesion at a given humidity, relative to that of poly(HEMA+MA); these affects are related to water-mediated surface compliance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据