4.8 Article

Hybridization enhancement using cavitation microstreaming

期刊

ANALYTICAL CHEMISTRY
卷 75, 期 8, 页码 1911-1917

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac026267t

关键词

-

向作者/读者索取更多资源

Conventional DNA microarray hybridization relies on diffusion of target to surface-bound probes, and thus is a rate-limited process. In this paper, a micromixing technique based on cavitation microstreaming principle that was developed to accelerate hybridization process is explained. Fluidic experiments showed that air bubbles resting on a solid surface and set into vibration by a sound field generated steady circulatory flows, resulting in global convection flows and, thus, rapid mixing. The time to fully mix dyed solutions in a 50-muL chamber using cavitation microstreaming was significantly reduced from hours (a pure diffusion-based mixing) to 6 s. Cavitation microstreaming was implemented to enhance DNA hybridization in both fluorescence-detection-based and electrochemical-detection-based DNA microarray chips. The former showed that cavitation microstreaming results in up to 5-fold hybridization signal enhancement with significantly improved signal uniformity, as compared to the results obtained in conventional diffusion-based biochips for a given time (2 h). Hybridization kinetics study in the electrochemical detection-based chips showed that acoustic microstreaming results in up to 5-fold kinetics acceleration. Acoustic microstreaming has many advantages over most existing techniques used for hybridization enhancement, including a simple apparatus, ease of implementation, low power consumption (similar to2 mW), and low cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据