4.6 Article

Stacking faults in 3C-, 4H-, and 6H-SiC polytypes investigated by an ab initio supercell method -: art. no. 155204

期刊

PHYSICAL REVIEW B
卷 67, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.155204

关键词

-

向作者/读者索取更多资源

Recent attempts to make SiC diodes have revealed a problem with stacking fault expansion in the material, leading to unstable devices. In this paper, we present detailed results from a density-functional supercell calculation on the electronic structure of stacking faults which result from glide of Shockley partials in 3C-, 4H- and 6H-SiC. It was found [Phys. Rev. B 65, 033203 (2002)] that both types of stacking faults in 4H-SiC and two types of stacking faults in 6H-SiC give rise to band states, which are strongly localized (confined within around 10 Angstrom) in the direction orthogonal to the stacking fault plane. Based on estimates of the band offsets between different polytypes and a simple quantum-well theory, we show that it is possible to interpret this one-dimensional localization as a quantum-well confinement effect. We also find that the third type of stacking fault in 6H-SiC and the only stacking fault in 3C-SiC do not give rise to states clearly separated from the band edges, but instead give rise to rather strongly localized band states with energies very close to the band edges. We argue that these localized near band edge states are created by stacking fault induced changes in the dipole moment associated with the hexagonal symmetry. In addition, we have also calculated the stacking fault energies, using both the supercell method and the simpler ANNNI (axial next nearest-neighbor Ising) model. Both theories agree well with the low stacking fault energies found experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据