4.4 Article

Structure and stability of Fe3C-cementite surfaces from first principles

期刊

SURFACE SCIENCE
卷 530, 期 1-2, 页码 87-100

出版社

ELSEVIER
DOI: 10.1016/S0039-6028(03)00352-2

关键词

density functional calculations; steel; corrosion; surface energy; iron; carbides

向作者/读者索取更多资源

We report results of gradient-corrected pseudopotential-based density functional theory calculations on bulk Fe3C in the cementite structure and its (001), (110), (011), (100), (101), (010), and (111) surfaces. Bulk properties are in reasonable agreement with available experimental data. The cementite local density of states shows predominantly metallic character, along with some polar covalent bonding contributions (charge transfer from iron to carbon) for both bulk and surfaces. We predict cementite surface energies in the range of 2.0-2.5 J/m(2), most of which are lower than all pure Fe surface energies. In particular, we predict the Fe3C (001) surface to be the most stable and the Fe3C (10 0) surface to be the least stable. We show that greater stability is associated with localized Fe-C bonding at the surface, smoother surfaces created, e.g., by large C atom relaxation into the bulk, and more uniform coordination at the surface. The relatively greater stability of Fe3C surfaces is suggested to provide the driving force for cementite to form at the surfaces of bcc iron. Implications for the carburization erosion mechanism for steel, such as cracking and melting, are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据