4.5 Article

Chemical activation of single-walled carbon nanotubes for hydrogen adsorption

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 16, 页码 3752-3760

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp027631v

关键词

-

向作者/读者索取更多资源

Adsorption isotherms for hydrogen on single-walled nanotubes (SWNTs) subjected to various types of pretreatment have been measured by a tapered-element oscillating mass analyzer. Isotherms at room temperature over a range of pressures up to 48 bar have been measured. We demonstrate that activation of the SWNT samples by mild oxidation in CO2, followed by heat treatment in an inert atmosphere, increases the hydrogen adsorption capacity of the SWNT samples by about a factor of 3 at 48 bar. Computer simulations have been performed to model the adsorption isotherms. Bundles of homogeneous (all the same diameter) and heterogeneous (composed of a number of different diameters) nanotubes have been considered. Isotherms computed using a standard graphitic potential for the nanotubes give remarkably good agreement with the experimentally measured isotherms before activation with CO2. The effect of activation is modeled by independently increasing the nanotube spacing and the solid-fluid interaction potential. We find that nanotube spacing alone cannot account for the measured increase in adsorption capacity. Increasing the interaction potential gives isotherms that are qualitatively different from experiments, while a combination of increased nanotube spacing and increased solid-fluid potential gives rough agreement with experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据