4.7 Article

Structural features of human initiation factor 4E, studied by x-ray crystal analyses and molecular dynamics simulations

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 328, 期 2, 页码 365-383

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00314-0

关键词

initiation factor 4E; m(7)GTP; m(7)GpppA; X-ray crystal structure; molecular dynamics simulation

向作者/读者索取更多资源

The structural features of human eIF4E were investigated by X-ray crystal analyses of its cap analog (m(7)GTP and m(7)GpppA) complexes and molecular dynamics (MD) simulations of cap-free and cap-bound eIF4Es, as well as the cap-bound Ser209-phosphorylated eIF4E. Crystal structure analyses at 2.0 Angstrom resolution revealed that the molecule forms a temple-bell-shaped surface of eight antiparallel beta-structures, three alpha-helices and ten loop structures, where the N-terminal region corresponds to the handle of the bell. This concave backbone provides a scaffold for the mRNA cap-recognition pocket consisting of three receiving parts for the 5'-terminal m(7)G base, the triphosphate, and the second nucleotide. The m(7)G base is sandwiched between the two aromatic side-chains of Trp102 and Trp56. The two (m(7)G)NH-O (Glu103 carboxy group) hydrogen bonds stabilize the stacking interaction. The basic residues of Arg157 and Lys162 and water molecules construct a binding pocket for the triphosphate moiety, where a universal hydrogen-bonding network is formed. The flexible C-terminal loop region unobserved in the m(7)GTP complex was clearly observed in the m(7)GpppA complex, as a result of the fixation of this loop by the interaction with the adenosine moiety, indicating the function of this loop as a receiving pocket for the second nucleotide. On the other hand, MD simulation in an aqueous solution system revealed that the cap-binding pocket, especially its C-terminal loop structure, is flexible in the cap-free eIF4E, and the entrance of the cap-binding pocket becomes narrow, although the depth is relatively unchanged. SDS-PAGE analyses showed that this structural instability is highly related to the fast degradation of cap-free eIF4E, compared with cap-bound or 4E-BP/cap-bound eIF4E, indicating the conferment of structural stability of eIF4E by the binary or ternary complex formation. MD simulation of m(7)GpppA-bound Ser209-phosphorylated eIF4E showed that the size of the cap-binding entrance is dependent on the ionization state in the Ser209 phosphorylation, which is associated with the regulatory function through the switching on/off of eIF4E phosphorylation. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据