4.8 Article

Design of a microporous controlled delivery system for theophylline tablets

期刊

JOURNAL OF CONTROLLED RELEASE
卷 89, 期 2, 页码 179-187

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(03)00090-7

关键词

microporous-control led tablets; poly(epsilon-caprolactone); poly(ethylene glycol)

向作者/读者索取更多资源

The aim of present work was to develop a microporous-controlled delivery system for theophylline via coating a blend of PCL and PEG on the surface of tablets, where PCL was the major component of film coating material and PEG was acted as a leachable pore-forming agent when contacting with an aqueous medium. The influences of the type of solvent, the amount of PEG. and the thickness of films on the mechanical and thermal properties of coating films and drug release performance were investigated. The DSC thermograms and FTIR spectra indicated both PCL and PEG remained independently in the blended films. The mechanical data showed a decrease tendency as increase in the amount of PEG in the blends due to highly crystalline character of PEG. Slower evaporation rate of acetone than dichloromethane enhanced phase separation between PCL and PEG during film formation, and resulted in the pore size in films prepared from acetone larger than from dichloromethane. The release rate of coated tablets were increased by increasing the amount of pore-forming agent, and the corresponding values from tablets coated in dichloromethane were less than in acetone. Much denser structure and smaller pore size of films formed from dichloromethane contributed to this result. The release of drug from tablets coated in acetone showed a profile more close to a zero-order constant release profile. The penetration of water into drug core played an important role in influencing drug release pattern. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据