4.8 Article

The role of side-chain interactions in the early steps of aggregation:: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0835307100

关键词

protein aggregation; misfolding; energy landscape

向作者/读者索取更多资源

Understanding the early steps of aggregation at atomic detail might be crucial for the rational design of therapeutics preventing diseases associated with amyloid deposits. In this paper, aggregation of the heptapeptide GNNQQNY, from the N-terminal priondetermining domain of the yeast protein Sup35, was studied by 20 molecular dynamics runs for a total simulation time of 20 mus. The simulations generate in-register parallel packing of GNNQQNY beta-strands that is consistent with x-ray diffraction and Fourier transform infrared data. The statistically preferred aggregation pathway does not correspond to a purely downhill profile of the energy surface because of the presence of enthalpic barriers that originate from out-of-register interactions. The parallel beta-sheet arrangement is favored over the antiparallel because of side-chain contacts; in particular, stacking interactions of the tyrosine rings and hydrogen bonds between amide groups. No ordered aggregation was found in control simulations with the mutant sequence SQNGNQQRG in accord with experimental data and the strong sequence dependence of aggregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据