4.8 Article

Motion generation by Drosophila mechanosensory neurons

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0737564100

关键词

-

向作者/读者索取更多资源

In Drosophila melanogaster, hearing is supported by mechanosensory neurons transducing sound-induced vibrations of the antenna. It is shown here that these neurons additionally generate motions that mechanically drive the antenna and tune it to relevant sounds. Motion generation in the Drosophila auditory system is betrayed by the auditory mechanics; the antenna of the fly nonlinearly alters its tuning as stimulus intensity declines and oscillates spontaneously in the absence of sound. The susceptibility of auditory motion generation to mechanosensory mutations shows that motion is generated by mechanosensory neurons. Motion generation depends on molecular components of the mechanosensory transduction machinery (NompA, NompC, Btv, and TiIB), apparently involving mechanical activity of ciliated dendrites and microtubule-dependent motors. Hence, in analogy to vertebrate hair cells, the mechanosensory neurons of the fly serve dual, transducing, and actuating roles, documenting a striking functional parallel between the vertebrate cochlea and the ears of Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据