4.8 Article

Sarcolipin regulates sarco(endo)plasmic reticulurn Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0330962100

关键词

-

向作者/读者索取更多资源

Phospholamban (PLN), a regulator of sarco(endo) plasmic reticulum Ca2+-ATPases (SERCAs), interacts with both the cytosolic N domain and transmembrane helices M2, M4, M6, and M9 of SERCA. Amino acids in the transmembrane domain of PLN that are predicted to interact with SERCA1a are conserved in sarcolipin (SLN), a functional PLN homologue. Accordingly, the effects of critical mutations in SERCA1a, PLN, and NF-SLN (SLN tagged N-terminally with a FLAG epitope) on NF-SLN/SERCA1a and PLN/NF-SLN/SERCA1a interactions were compared. Critical mutations in SERCA1a and NF-SLN diminished functional interactions between SERCA1a and NF-SLN, indicating that NF-SLN and PLN interact with some of the same amino acids in SERCA1a. Mutations in PLN or NF-SLN affected the amount of SERCA1a that was coimmunoprecipitated in each complex with antibodies against either PLN or SLN, but not the pattern of coimmunoprecipitation. PLN mutations had more dramatic effects on SERCA1a coimmunoprecipitation than SLN mutations, suggesting that PLN dominates in the primary interaction with SERCA1a. Coimmunoprecipitation also confirmed that PLN and NF-SLN form a heterodimer that interacts with SERCA1a in a regulatory fashion to form a very stable PLN/NF-SLN/SERCA1a complex. Modeling showed that the SLN/SERCA1a complex closely resembles the PLN/SERCA1a complex, but with the luminal end of SLN extending to the loop connecting M1 and M2, where Tyr-29 and Tyr-31 interact with aromatic residues in SERCA1a. Modeling of the PLN/SLN/SERCA1a complex predicts that the regulator binding cavity in the E-2 conformation of SERCA1a can accommodate both SLN and PLN helices, but not two PLN helices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据