4.5 Article

Resistance of postharvest biocontrol yeasts to oxidative stress: A possible new mechanism of action

期刊

PHYTOPATHOLOGY
卷 93, 期 5, 页码 564-572

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PHYTO.2003.93.5.564

关键词

Malus domestica

向作者/读者索取更多资源

We detected the generation of the reactive oxygen species (ROS) superoxide anion (O-2(radical anion)) and hydrogen peroxide (H2O2) in apple wounds immediately after wounding, and assessed the relationships between (i) timely colonization of apple wounds by biocontrol yeasts, (ii) resistance of these microorganisms to oxidative stress caused by ROS, and (iii) their antagonism against postharvest wound pathogens. We analyzed a model system consisting of two yeasts with higher (Cryptococcus laurentii LS-28) or lower (Rhodotorula glutinis LS-11) antagonistic activity against the postharvest pathogens Botrytis cinerea and Penicillium expansum. . LS-28 exhibited faster and greater colonization of wounds than LS-11. In contrast to LS-28, the number of LS-11 cells dropped 1 and 2 h after application, and then increased only later. In vitro, LS-28 was more resistant to ROS-generated oxidative stress. The combined application of biocontrol yeasts and ROS-deactivating enzymes in apple wounds prevented the decrease in number of LS-11 cells mentioned above, and enhanced colonization and antagonistic activity of both biocontrol yeasts against B. cinerea and P. expansum. Polar lipids of LS-11 contained the more unsaturated and oxidizable a-linolenic acid, which was absent in LS-28. Resistance to oxidative stress could be a key mechanism of biocontrol yeasts antagonism against postharvest wound pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据